Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Epidemiol ; 191(11): 1897-1905, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2097303

ABSTRACT

We aimed to determine whether long-term ambient concentrations of fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5)) were associated with increased risk of testing positive for coronavirus disease 2019 (COVID-19) among pregnant individuals who were universally screened at delivery and whether socioeconomic status (SES) modified this relationship. We used obstetrical data collected from New-York Presbyterian Hospital/Columbia University Irving Medical Center in New York, New York, between March and December 2020, including data on Medicaid use (a proxy for low SES) and COVID-19 test results. We linked estimated 2018-2019 PM2.5 concentrations (300-m resolution) with census-tract-level population density, household size, income, and mobility (as measured by mobile-device use) on the basis of residential address. Analyses included 3,318 individuals; 5% tested positive for COVID-19 at delivery, 8% tested positive during pregnancy, and 48% used Medicaid. Average long-term PM2.5 concentrations were 7.4 (standard deviation, 0.8) µg/m3. In adjusted multilevel logistic regression models, we saw no association between PM2.5 and ever testing positive for COVID-19; however, odds were elevated among those using Medicaid (per 1-µg/m3 increase, odds ratio = 1.6, 95% confidence interval: 1.0, 2.5). Further, while only 22% of those testing positive showed symptoms, 69% of symptomatic individuals used Medicaid. SES, including unmeasured occupational exposures or increased susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to concurrent social and environmental exposures, may explain the increased odds of testing positive for COVID-19 being confined to vulnerable pregnant individuals using Medicaid.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Pregnancy , Female , Humans , Particulate Matter/analysis , SARS-CoV-2 , Air Pollution/adverse effects , Air Pollutants/analysis , New York City/epidemiology , Prevalence , Environmental Exposure/adverse effects , Social Class
2.
Nat Commun ; 13(1): 6307, 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2087207

ABSTRACT

Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that locations with higher vaccination coverage and lower numbers of visitors to points-of-interest had reduced within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings.


Subject(s)
COVID-19 , Contact Tracing , Humans , COVID-19/epidemiology , SARS-CoV-2 , New York City/epidemiology , Pandemics/prevention & control
3.
PLoS One ; 16(12): e0260931, 2021.
Article in English | MEDLINE | ID: covidwho-1632675

ABSTRACT

During the COVID-19 pandemic, US populations have experienced elevated rates of financial and psychological distress that could lead to increases in suicide rates. Rapid ongoing mental health monitoring is critical for early intervention, especially in regions most affected by the pandemic, yet traditional surveillance data are available only after long lags. Novel information on real-time population isolation and concerns stemming from the pandemic's social and economic impacts, via cellular mobility tracking and online search data, are potentially important interim surveillance resources. Using these measures, we employed transfer function model time-series analyses to estimate associations between daily mobility indicators (proportion of cellular devices completely at home and time spent at home) and Google Health Trends search volumes for terms pertaining to economic stress, mental health, and suicide during 2020 and 2021 both nationally and in New York City. During the first pandemic wave in early-spring 2020, over 50% of devices remained completely at home and searches for economic stressors exceeded 60,000 per 10 million. We found large concurrent associations across analyses between declining mobility and increasing searches for economic stressor terms (national proportion of devices at home: cross-correlation coefficient (CC) = 0.6 (p-value <0.001)). Nationally, we also found strong associations between declining mobility and increasing mental health and suicide-related searches (time at home: mood/anxiety CC = 0.53 (<0.001), social stressor CC = 0.51 (<0.001), suicide seeking CC = 0.37 (0.006)). Our findings suggest that pandemic-related isolation coincided with acute economic distress and may be a risk factor for poor mental health and suicidal behavior. These emergent relationships warrant ongoing attention and causal assessment given the potential for long-term psychological impact and suicide death. As US populations continue to face stress, Google search data can be used to identify possible warning signs from real-time changes in distributions of population thought patterns.


Subject(s)
COVID-19/psychology , Cell Phone/statistics & numerical data , Search Engine/statistics & numerical data , Socioeconomic Factors , Suicide/psychology , Geographic Information Systems , Humans , Mental Health/statistics & numerical data , New York City , Quarantine/statistics & numerical data , Search Engine/trends , Stress, Psychological , Time Factors , United States
4.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750481

ABSTRACT

New York City has been one of the hotspots of the COVID-19 pandemic and during the first two months of the outbreak considerable variability in case positivity was observed across the city's ZIP codes. In this study, we examined: a) the extent to which the variability in ZIP code level cases can be explained by aggregate markers of socioeconomic status and daily change in mobility;and b) the extent to which daily change in mobility independently predicts case positivity. Our analysis indicates that the markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Our analysis also indicates that changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP-level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity. Together, these findings present evidence that heterogeneity in COVID-19 case positivity in New York City is largely driven by neighborhood socioeconomic status.

5.
PLoS Med ; 18(10): e1003793, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477510

ABSTRACT

BACKGROUND: The importance of infectious disease epidemic forecasting and prediction research is underscored by decades of communicable disease outbreaks, including COVID-19. Unlike other fields of medical research, such as clinical trials and systematic reviews, no reporting guidelines exist for reporting epidemic forecasting and prediction research despite their utility. We therefore developed the EPIFORGE checklist, a guideline for standardized reporting of epidemic forecasting research. METHODS AND FINDINGS: We developed this checklist using a best-practice process for development of reporting guidelines, involving a Delphi process and broad consultation with an international panel of infectious disease modelers and model end users. The objectives of these guidelines are to improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. The guidelines are not designed to advise scientists on how to perform epidemic forecasting and prediction research, but rather to serve as a standard for reporting critical methodological details of such studies. CONCLUSIONS: These guidelines have been submitted to the EQUATOR network, in addition to hosting by other dedicated webpages to facilitate feedback and journal endorsement.


Subject(s)
Biomedical Research/standards , COVID-19/epidemiology , Checklist/standards , Epidemics , Guidelines as Topic/standards , Research Design , Biomedical Research/methods , Checklist/methods , Communicable Diseases/epidemiology , Epidemics/statistics & numerical data , Forecasting/methods , Humans , Reproducibility of Results
6.
Influenza Other Respir Viruses ; 16(1): 56-62, 2022 01.
Article in English | MEDLINE | ID: covidwho-1467562

ABSTRACT

BACKGROUND: The COVID-19 pandemic has overrun hospital systems while exacerbating economic hardship and food insecurity on a global scale. In an effort to understand how early action to find and control the virus is associated with cumulative outcomes, we explored how country-level testing capacity affects later COVID-19 mortality. METHODS: We used the Our World in Data database to explore testing and mortality records in 27 countries from December 31, 2019, to September 30, 2020; we applied Cox proportional hazards regression to determine the relationship between early COVID-19 testing capacity (cumulative tests per case) and later COVID-19 mortality (time to specified mortality thresholds), adjusting for country-level confounders, including median age, GDP, hospital bed capacity, population density, and nonpharmaceutical interventions. RESULTS: Higher early testing implementation, as indicated by more cumulative tests per case when mortality was still low, was associated with a lower risk for higher per capita deaths. A sample finding indicated that a higher cumulative number of tests administered per case at the time of six deaths per million persons was associated with a lower risk of reaching 15 deaths per million persons, after adjustment for all confounders (HR = 0.909; P = 0.0001). CONCLUSIONS: Countries that developed stronger COVID-19 testing capacity at early timepoints, as measured by tests administered per case identified, experienced a slower increase of deaths per capita. Thus, this study operationalizes the value of testing and provides empirical evidence that stronger testing capacity at early timepoints is associated with reduced mortality and improved pandemic control.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Pandemics , Poverty , SARS-CoV-2
7.
Nature ; 598(7880): 338-341, 2021 10.
Article in English | MEDLINE | ID: covidwho-1373441

ABSTRACT

The COVID-19 pandemic disrupted health systems and economies throughout the world during 2020 and was particularly devastating for the United States, which experienced the highest numbers of reported cases and deaths during 20201-3. Many of the epidemiological features responsible for observed rates of morbidity and mortality have been reported4-8; however, the overall burden and characteristics of COVID-19 in the United States have not been comprehensively quantified. Here we use a data-driven model-inference approach to simulate the pandemic at county-scale in the United States during 2020 and estimate critical, time-varying epidemiological properties underpinning the dynamics of the virus. The pandemic in the United States during 2020 was characterized by national ascertainment rates that increased from 11.3% (95% credible interval (CI): 8.3-15.9%) in March to 24.5% (18.6-32.3%) during December. Population susceptibility at the end of the year was 69.0% (63.6-75.4%), indicating that about one third of the US population had been infected. Community infectious rates, the percentage of people harbouring a contagious infection, increased above 0.8% (0.6-1.0%) before the end of the year, and were as high as 2.4% in some major metropolitan areas. By contrast, the infection fatality rate fell to 0.3% by year's end.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2 , Basic Reproduction Number , COVID-19/economics , COVID-19/mortality , Calibration , Cost of Illness , Humans , Incidence , Pandemics , Prevalence , United States/epidemiology
8.
PLoS Med ; 18(7): e1003693, 2021 07.
Article in English | MEDLINE | ID: covidwho-1308143

ABSTRACT

BACKGROUND: With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. METHODS AND FINDINGS: County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran's I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R2); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%-29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R2. Mortality is estimated to increase by 43 per thousand residents (95% CI: 37-49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34-44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. CONCLUSIONS: Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Female , Humans , Male , Socioeconomic Factors , United States/epidemiology
9.
Lancet Infect Dis ; 21(2): 203-212, 2021 02.
Article in English | MEDLINE | ID: covidwho-1137671

ABSTRACT

BACKGROUND: As the COVID-19 pandemic continues to unfold, the infection-fatality risk (ie, risk of death among all infected individuals including those with asymptomatic and mild infections) is crucial for gauging the burden of death due to COVID-19 in the coming months or years. Here, we estimate the infection-fatality risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in New York City, NY, USA, the first epidemic centre in the USA, where the infection-fatality risk remains unclear. METHODS: In this model-based analysis, we developed a meta-population network model-inference system to estimate the underlying SARS-CoV-2 infection rate in New York City during the 2020 spring pandemic wave using available case, mortality, and mobility data. Based on these estimates, we further estimated the infection-fatality risk for all ages overall and for five age groups (<25, 25-44, 45-64, 65-74, and ≥75 years) separately, during the period March 1 to June 6, 2020 (ie, before the city began a phased reopening). FINDINGS: During the period March 1 to June 6, 2020, 205 639 people had a laboratory-confirmed infection with SARS-CoV-2 and 21 447 confirmed and probable COVID-19-related deaths occurred among residents of New York City. We estimated an overall infection-fatality risk of 1·39% (95% credible interval 1·04-1·77) in New York City. Our estimated infection-fatality risk for the two oldest age groups (65-74 and ≥75 years) was much higher than the younger age groups, with a cumulative estimated infection-fatality risk of 0·116% (0·0729-0·148) for those aged 25-44 years and 0·939% (0·729-1·19) for those aged 45-64 years versus 4·87% (3·37-6·89) for those aged 65-74 years and 14·2% (10·2-18·1) for those aged 75 years and older. In particular, weekly infection-fatality risk was estimated to be as high as 6·72% (5·52-8·01) for those aged 65-74 years and 19·1% (14·7-21·9) for those aged 75 years and older. INTERPRETATION: Our results are based on more complete ascertainment of COVID-19-related deaths in New York City than other places and thus probably reflect the true higher burden of death due to COVID-19 than that previously reported elsewhere. Given the high infection-fatality risk of SARS-CoV-2, governments must account for and closely monitor the infection rate and population health outcomes and enact prompt public health responses accordingly as the COVID-19 pandemic unfolds. FUNDING: National Institute of Allergy and Infectious Diseases, National Science Foundation Rapid Response Research Program, and New York City Department of Health and Mental Hygiene.


Subject(s)
COVID-19/mortality , Pandemics , SARS-CoV-2 , Adolescent , Adult , Aged , Algorithms , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Theoretical , Mortality , New York City/epidemiology , Public Health Surveillance , Young Adult
10.
Psychol Med ; 51(4): 529-537, 2021 03.
Article in English | MEDLINE | ID: covidwho-1118760

ABSTRACT

Suicide in the US has increased in the last decade, across virtually every age and demographic group. Parallel increases have occurred in non-fatal self-harm as well. Research on suicide across the world has consistently demonstrated that suicide shares many properties with a communicable disease, including person-to-person transmission and point-source outbreaks. This essay illustrates the communicable nature of suicide through analogy to basic infectious disease principles, including evidence for transmission and vulnerability through the agent-host-environment triad. We describe how mathematical modeling, a suite of epidemiological methods, which the COVID-19 pandemic has brought into renewed focus, can and should be applied to suicide in order to understand the dynamics of transmission and to forecast emerging risk areas. We describe how new and innovative sources of data, including social media and search engine data, can be used to augment traditional suicide surveillance, as well as the opportunities and challenges for modeling suicide as a communicable disease process in an effort to guide clinical and public health suicide prevention efforts.


Subject(s)
Communicable Diseases/transmission , Epidemiological Monitoring , Models, Theoretical , Suicide/statistics & numerical data , COVID-19/transmission , Humans
11.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: covidwho-913664

ABSTRACT

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Models, Theoretical , Pandemics/prevention & control , COVID-19/epidemiology , Cities , Geography , Humans , Incidence , Population Dynamics , SARS-CoV-2/physiology , Time Factors , United States/epidemiology
12.
Influenza Other Respir Viruses ; 15(2): 209-217, 2021 03.
Article in English | MEDLINE | ID: covidwho-873370

ABSTRACT

BACKGROUND: New York City (NYC) has been one of the hotspots of the COVID-19 pandemic in the United States. By the end of April 2020, close to 165 000 cases and 13 000 deaths were reported in the city with considerable variability across the city's ZIP codes. OBJECTIVES: In this study, we examine: (a) the extent to which the variability in ZIP code-level case positivity can be explained by aggregate markers of socioeconomic status (SES) and daily change in mobility; and (b) the extent to which daily change in mobility independently predicts case positivity. METHODS: COVID-19 case positivity by ZIP code was modeled using multivariable linear regression with generalized estimating equations to account for within-ZIP clustering. Daily case positivity was obtained from NYC Department of Health and Mental Hygiene and measures of SES were based on data from the American Community Survey. Changes in human mobility were estimated using anonymized aggregated mobile phone location systems. RESULTS: Our analysis indicates that the socioeconomic markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP-level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity. CONCLUSIONS: Together, these findings present evidence that heterogeneity in COVID-19 case positivity during NYC's spring outbreak was largely driven by residents' SES.


Subject(s)
COVID-19/epidemiology , Health Status Disparities , Residence Characteristics/statistics & numerical data , COVID-19/prevention & control , Humans , Incidence , Motor Activity , New York City/epidemiology , SARS-CoV-2 , Social Class , Socioeconomic Factors
13.
medRxiv ; 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-636666

ABSTRACT

New York City has been one of the hotspots of the COVID-19 pandemic and during the first two months of the outbreak considerable variability in case positivity was observed across the city's ZIP codes. In this study, we examined: a) the extent to which the variability in ZIP code level cases can be explained by aggregate markers of socioeconomic status and daily change in mobility; and b) the extent to which daily change in mobility independently predicts case positivity. Our analysis indicates that the markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Our analysis also indicates that changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP-level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity. Together, these findings present evidence that heterogeneity in COVID-19 case positivity in New York City is largely driven by neighborhood socioeconomic status.

SELECTION OF CITATIONS
SEARCH DETAIL